Homework 6 - Due Tuesday, August 8th at 10:00AM

 Linear Independence, Basis, and Eigenvalues PracticeMake sure to justify your solution for each problem.

1. Determine if the columns of A form a linearly independent set.

$$
A=\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right]
$$

2. Find a basis for each of the following subspaces of \mathbb{R}^{n}.
(a) All vectors whose components are equal in \mathbb{R}^{4}.
(b) All vectors whose components add up to zero in \mathbb{R}^{4}.
3. Consider the matrix $A=\left[\begin{array}{cccc}2 & 5 & -8 & 7 \\ -1 & 5 & 4 & 7 \\ 0 & 5 & 0 & 7\end{array}\right]$. Find a basis for $\operatorname{Col} A$.
4. If A is an $n \times n$ matrix and λ is an eigenvalue of A , show that 2λ is an eigenvalue of 2 A .
